A New Determinant Expression of the Zeta Function for a Hypergraph
نویسنده
چکیده
Recently, Storm [10] defined the Ihara-Selberg zeta function of a hypergraph, and gave two determinant expressions of it by the Perron-Frobenius operator of a digraph and a deformation of the usual Laplacian of a graph. We present a new determinant expression for the Ihara-Selberg zeta function of a hypergraph, and give a linear algebraic proof of Storm’s Theorem. Furthermore, we generalize these results to the Bartholdi zeta function of a hypergraph.
منابع مشابه
Bartholdi Zeta Functions for Hypergraphs
Recently, Storm [8] defined the Ihara-Selberg zeta function of a hypergraph, and gave two determinant expressions of it. We define the Bartholdi zeta function of a hypergraph, and present a determinant expression of it. Furthermore, we give a determinant expression for the Bartholdi zeta function of semiregular bipartite graph. As a corollary, we obtain a decomposition formula for the Bartholdi...
متن کاملA New Determinant Expression for the Weighted Bartholdi Zeta Function of a Digraph
We consider the weighted Bartholdi zeta function of a digraph D, and give a new determinant expression of it. Furthermore, we treat a weighted L-function of D, and give a new determinant expression of it. As a corollary, we present determinant expressions for the Bartholdi edge zeta functions of a graph and a digraph.
متن کاملA New Bartholdi Zeta Function of a Graph
We define a new type of the Bartholdi zeta function of a graph G, and give a determinant expression of it. Furthermore, we define a new type of the Bartholdi L-function of G, and present a determinant expression for a new type of the Bartholdi L-function of G. As a corollary, we show that a new type of the Bartholdi zeta function of a regular covering of G is a product of new Batholdi L-functio...
متن کاملBartholdi Zeta Functions of Fractal Graphs
Recently, Guido, Isola and Lapidus [11] defined the Ihara zeta function of a fractal graph, and gave a determinant expression of it. We define the Bartholdi zeta function of a fractal graph, and present its determinant expression.
متن کاملThe Zeta Function of a Hypergraph
We generalize the Ihara-Selberg zeta function to hypergraphs in a natural way. Hashimoto’s factorization results for biregular bipartite graphs apply, leading to exact factorizations. For (d, r)-regular hypergraphs, we show that a modified Riemann hypothesis is true if and only if the hypergraph is Ramanujan in the sense of Winnie Li and Patrick Solé. Finally, we give an example to show how the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 16 شماره
صفحات -
تاریخ انتشار 2009